변수분리형
1계 미분방정식의 해법은 대체로 정형화되어 이미 정립되어있습니다. 그 방법의 유도과정이나 증명은 공대학생이라면 누구나 가지고 있을 공업수학책이나 각종 인터넷 자료를 참조하시고, 여기서는 몇몇 예제를 통해 풀이만 살펴보도록 하겠습니다.


먼저 위와 같은 형태를 가지는 1계 미방이 있다면, 변수분리형으로 풀 수가 있습니다.


위 예제인데요. 적절히 잘 정리하면 첫 식과 같은 형태로 꾸밀 수 있다는 것을 알 수 있습니다.


이렇게 말이지요.


그리고, 양변을 적분합니다. 그러면, 적분결과를 얻을 수 있고 (물론 적분상수도 나타나겠지요)

 
위와 같이 정리가 가능해집니다. 


이 문제 하나를 더 보죠. 변수분리가 가능하고, y끼리 x끼리 모아서


양변을 적분하면 위의 결과가 나타납니다.




동차형 혹은 비동차형 선형 미분방정식

위와 같이 표현되는 미분방정식 문제에서 f(x)=0라면, 변수분리형으로 풀이가 가능합니다만, 만약 그렇지 않다면 약간은 복잡한 풀이를 가져야합니다. 그러나, 일반화된 풀이법으로 적분인자를 사용하는 방법이 있습니다.


위 예제를 보시면, 애초 첫식에서 P(x)=-3이라고 확인 할 수 있습니다. 이를 이용하면

 
e^-3x 이라는 적분인자를 찾을 수 있고  이를 원 문제의 양변에 곱하면서 풀이를 시작할 수 있습니다. 관련 과정은 위키디피아의 미분방정식 문서를 확인하시길 바랍니다. 일단 적분인자를 양변에 곱하고 나면, 

 
위와 같이 적분이 가능해집니다.




완전미분방정식
만약


위에서 처럼 두 항이 사실 하나의 미분항으로 표현이 가능할때 완전미분방정식이라고 부릅니다.


즉, 위와 같이 표현될때, 어떤 원래의 식 f(x,y)가 있다면, f를 x에 대해 편미분하면 M이 y에 대해 편미분하면 N으로 표현이 되는 것인데요. 이때 주어진 미분방정식이 완전미방인지 아닌지 판단하는 방법이

 
위의 식입니다. 일단 완전미분방정식이라는 사실이 밝혀지고 나면 풀이는 쉬워지는데요. 다음 문제를 보겠습니다.

 
이 문제에서 M=2xy, N=(x^2-1)입니다. 

 
그리고 완전미방인지 확인했더니 맞네요. 그렇다면, 두 식(M, N)을 모두 표현할 수 있는 하나의 식이 있다는 이야기가 됩니다.

 
그러니 그 원래의 실(f)을 x에 편미분한 결과가 2xy이니까 다시 x에 대해 적분을 수행하는 것입니다.

 
이렇게 말이죠. 그러면 원래 적분상수같은 애가 하나 남아줘야하는데, 이것을 x에 대한 적분을 수행한것이니 적분상수같은 애는 y로만 된 어떤 함수(g(y))라고 생각을 해야합니다.


그리고, 다시 y에대해 편미분을 하면, x^2-1과 같아야할 테니..

 
g'가 -1이라는 것을 알 수 있는 것이지요.

 
그러면, g는 -y라고 생각할 수 있습니다. 이때 또 적분상수에 대한 의문이 들텐데 여기서 잡아도 되고 최종식에서 잡아도 무리는 없습니다.

 
이렇게 해서 풀이를 완료할 수 있네요^^





참고자료



http://pinkwink.kr/trackback/277 관련글 쓰기
  • ㅠㅠ 2010/04/28 23:14

    ㄳ여

  • 완전땡큐 2011/09/20 16:47

    제가 모르는 내용이 있어서 퍼갈께요^^ 완전 좋은정보였습니다. ㅋ

  • 감사합니다 2013/10/21 11:11

    안녕하세요^^~ 미분방정식에 forcing term(input)이 있으면 particular sol을 구해서,
    y=y_h+y_p 로 구해야 되잖아요.. 그럼 여기서 homogenous sol과 particular sol은 서로 linearly independent 인가요? dependent 인가요~??

    둘의 관계가 궁금합니다~

    • PinkWink 2013/10/21 19:21

      공업수학 강의한지 한 4년되었나요? 오랜만에 질문이네요.
      안타까운건 결론은 잘 모르겠습니다.
      independent인지 dependent인지는 살짝 정의에 맞게 직접 유도를 해보세요. 일차결합으로 표현될 수 있는지 아닌지 말이죠^^
      직접 유도해보면 좋겠지만, 지금은 그럴만한 의지가 살짝 생기지 않네요^^

  • 익명 2014/08/30 05:30

    많이 배우고갑니다~~